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Almost all democratic societies evolved socially and politically out
of authoritarian and nondemocratic regimes. These changes not
only altered the allocation of economic resources in society but
also the structure of political power. In this paper, we develop
a framework for studying the dynamics of political and social
change. The society consists of agents that care about current and
future social arrangements and economic allocations; allocation of
political power determines who has the capacity to implement
changes in economic allocations and future allocations of power.
The set of available social rules and allocations at any point in time
is stochastic. We show that political and social change may happen
without any stochastic shocks or as a result of a shock destabiliz-
ing an otherwise stable social arrangement. Crucially, the process
of social change is contingent (and history-dependent): the timing
and sequence of stochastic events determine the long-run equi-
librium social arrangements. For example, the extent of democra-
tization may depend on how early uncertainty about the set of
feasible reforms in the future is resolved.

history dependence | political equilibrium

Almost all today’s social, political, and economic institutions
have evolved over decades and sometimes, hundreds of

years. For example, many scholars trace the roots of British
political institutions to 1215, when the barons forced King John
to sign the Magna Carta, introducing the first formal restrictions
on the authority of the monarchs and paving the way to the
Glorious Revolution of 1688 and the Bill of Rights. The more
recent wave of democratization in Britain started with the first
Reform Act of 1832, which modestly extended the franchise.
This act was followed by a series of reforms gradually extending
voting rights over the next three-quarters of a century, first to
a broader franchise of adult men and then to women. Both the
protesters demanding change in 1832 and the political elites that
agreed to address these demands by extending the franchise
modestly likely understood many of the consequences of these
political changes (1). However, they were as unlikely to perfectly
foresee—or care about—the sequence of events, including the
repeal of the Corn Laws in 1846 and the arrival of universal mass
suffrage, unleashed by this reform as the barons that forced King
John to sign the Magna Carta were unlikely to understand the
importance that this document would have centuries later.
This brief description suggests that a satisfactory framework of

social evolution should incorporate three key ingredients.

i) Strategic agents: any institutional change is implemented
by strategic individuals (even if their preferences reflect
the preferences of larger social groups). These individuals
seek to maximize their future benefits in the context of a
well-defined game.

ii) Discounting: agents discount future payoffs and thus put
limited weight on events that will take place in the very far
future. For example, the barons that pushed for the Magna
Carta cared greatly about its consequences in the near
future, but its consequences in 800 y would have meant
little to them.

iii) Stochastic future: the environment is subject to stochastic
shocks. This finding is important for modeling the contin-
gent nature of social and political change, and it also allows

us to better capture the notion that agents are not able to
perfectly foresee the future path of events (although they do
understand what set of events are feasible in the future).

In this paper, we provide a general but tractable framework of
social, economic, and political evolution incorporating these
ingredients. The society consists of agents that care about current
and future social rules and allocations that are comprised of eco-
nomic as well as social elements. A change in social rules not only
affects current allocations, but it also alters the balance of power in
society and potentially, impacts future social rules and allocations.
We assume that the set of social rules and allocations can be

represented by an ordered set (e.g., by a set of rules that can be
thought of as less democratic or more democratic). Although re-
strictive, this assumption, together with stage payoffs that satisfy
a single-crossing condition (Example 1), enables us to provide
a sharp analysis of the process of social evolution. In particular,
under these assumptions and some additional, mostly technical
assumptions, we prove that the dynamic game representing the
process of social evolution always has a pure strategy (Nash) equi-
librium, and we provide a fairly tight characterization of the struc-
ture of equilibria. We view this framework as a political model
of social evolution, because the extent of social change is determined
and restricted by political equilibria, particularly, by concerns about
how political power will shift as a result of possible social changes.
Social rules and allocations change in this framework when

those people who are currently (socially or politically) powerful
agree to a change. Social change may happen without any sto-
chastic shocks; it may happen as a result of a stochastic shock
destabilizing an otherwise stable social arrangement, or because
a sequence of changes is desirable for those currently holding
power. However, social change may fail to occur at times, even if
it is Pareto improving, precisely because it may reduce the future
power of the currently powerful.
We also show, using a simple example, how the set of possible

equilibrium configurations is both history-dependent and contin-
gent on the nature of stochastic events. For example, the extent of
democratization may depend on how early uncertainty about the
set of feasible reforms in the future is resolved. If this uncertainty
is resolved early and implies that other reforms are likely to follow
the current one, this uncertainty might discourage current re-
forms (for instance, the fact that early political concessions led to
greater democratic reforms in Tunisia may have discouraged
Syrian elites from making any concessions). Intuitively, current
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reform may correspond to a gamble for the political elites, with
the downside being a process of additional reforms reducing their
political power and social status. If they think that such reforms
are not likely, they will be willing to agree to the current reform;
however, if feasibility of such reforms is revealed early, this rev-
elation may increase their resolve against reform.
The next example illustrates some of the situations that can be

studied with this framework.

Example 1. Consider a society consisting of i = 1, . . . , n agents.
Suppose that lower-indexed agents are richer or more aristo-
cratic than higher-indexed agents. Suppose that the society
chooses one of s = 1, . . . , m social rules, with higher-indexed
social rules being more democratic or allocating greater social
status to poorer and less aristocratic agents than lower-indexed
ones. Social rules lead to different types of economic, social, and
political relationships among the agents. Rather than modeling
these relationships in detail, we simply assign a stage utility ui(s)
that agent i will obtain from social rule s. Each agent maximizes
the sum of stage payoffs discounted with factor β ∈ (0, 1). We
impose the single-crossing assumption that ui(s) − uj(s) is in-
creasing in s whenever i > j. This assumption implies that less
aristocratic individuals are less averse to (or more keen on) more
democratic social rules then more aristocratic ones. We impose
some reasonable conditions on how political and social power is
distributed under different social rules, loosely capturing the
notion that higher-indexed social rules are more democratic.
This finding may result from an explicit political process in which
agents vote or bargain or from social interactions giving more
decision-making capacity to agents with greater social status.
Finally, we model the stochastic nature of the environment by
assuming that, at time t, only a subset of the states, lt, . . . , rt, are
feasible, and additional states become feasible stochastically.
Therefore, when elites agreed to the modest extension of the
franchise in 1832, they may not have known for sure whether and
when future reform possibilities would present themselves (al-
though in our model, they understand that there is some likeli-
hood of this event happening).
Our paper is most closely related to the work in ref. 2 and our

own previous work (3, 4). In the work in ref. 3, we study a related
model but with two crucial differences. First, the discount factor
is taken to be large, and therefore, only the stable long-run
outcomes matter. Second, there are no stochastic transitions
(refs. 2 and 5 also study related models; the work in ref. 2 con-
siders an environment with side payments, and the work in ref. 5
focuses on submajority voting rules). In the work in ref. 4, we
study political selection and government formation in a pop-
ulation with heterogeneous and stochastically changing compe-
tencies, but these stochastic shocks are assumed to be very
infrequent, and the discount factor is again taken to be large
(close to one). Thus, the key issues related to gradual and sto-
chastic social evolution, which is our main focus in this paper, do
not arise in these papers. Finally, the analysis is also related to
models of voting in clubs, franchise extension, political reform,
and coalition formation. The related literature on these topics is
discussed in ref. 3, and we do not repeat this discussion here.
The rest of the paper is organized as follows. Model introduces

our baselinemodel.Analysis analyzes the structure of equilibria and
provides additional characterization results on the structure of
equilibrium transitions. Conclusion concludes. Appendix contains
some proofs and sketches of other proofs, whereas the rest and
some additional examples are in the SI Appendix.

Model
Time is discrete and infinite. The society consists of n agents N=
{1, . . . , n}, which may be interpreted as groups or individuals,
and there are m social rules, which we will refer to as states for
short, represented by the set S = {1, . . . , m}. These social rules/

states determine both current payoffs and the distribution of
social and political power in society. Each state is characterized
by the (stage) payoffs that individuals receive in a period when
society is in that state and also, by the set of winning coalitions
(i.e., coalitions of players that may decide to change the present
state in favor of a new one). Individual i obtains stage payoff ui(s)
in state s ∈ S. Denoting the state at time t by st and the expec-
tation at time t by Et, the expected discounted payoff of in-
dividual i at time t can be written as (Eq. 1)

Et

X∞

k¼0
βkuiðstþkÞ; [1]

where β ∈ (0, 1) is the common discount factor. Throughout, we
impose assumption 1.

Assumption 1 (Single Crossing). For any agents i, j ∈ N such that
i > j (Eq. 2),

uiðsÞ− ujðsÞ [2]

is increasing in s (on S).
In addition, we sometimes also assume that preferences are

single peaked, meaning that, for each agent i, there exists some
state si (his most preferred state) such that for any s″ > s′ ≥ si or s″
< s′ ≤ si, ui(s″) < ui(s′). In other words, different states are ranked
according to how close they are to this most preferred state.
We refer to nonempty subsets X of N as coalitions. Each state

s is associated with a subset Ws of the set of coalitions, which
designates the set of winning coalitions in state s and summarizes
(in an economical fashion) the agents that have political and
social power to alter existing social rules. For example, if, in state
s, a majority is required for decision-making, Ws includes all
subsets of N that form a majority; if, in state s, individual i is
a dictator, Ws includes all coalitions that include i. We impose
the following relatively mild and natural assumptions on the set
of winning coalitions.

Assumption 2 (Winning Coalitions). For any given s, the set of
winning coalitions Ws satisfies

i) if X ⊂ Y ⊂ N and X ∈ Ws, then Y ⊂ Ws,
ii) if X ∈ Ws, then N\X ∉ Ws, and
iii) Ws ≠ Ø.

The first part imposes the natural condition that, if a coalition
has the capacity to implement change, then a larger coalition
also does. The second part ensures that, if some coalition has the
capacity to implement change, then the remaining players (its
complement) do not; this rules out submajority-type rules. The
third part states that a winning coalition always exists.
We next introduce a generalization of the notion of median

voter.

Definition 1 (Quasi-Median Voter). Player i ∈ N is a quasi-median
voter in state s if, for any winning coalition, X ∈ Ws, min X ≤ i ≤
max X.
Definition 1 is adopted from ref. 3. In light of assumption 2,

part i, it is equivalent to assuming that player i is a quasi-median
voter if he is a member of any connected winning coalition in s
(i.e., any coalition X for which there exists some a, b ∈ N such
that j ∈ X 5 a ≤ j ≤ b). In the case where the set of winning
coalitions corresponds to majority voting, the quasi-median voter
coincides with the median voter (i.e., the voter whose most
preferred allocation is the median of the most preferred allo-
cations of all voters).
Let us denote the set of quasi-median voters in s by Ms. In the

work in ref. 3, we prove that, under assumption 2, Ms is non-
empty. Throughout this paper, we impose assumption 3.
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Assumption 3 (Monotonic Quasi-Median Voters). Sequences {min
Ms}s∈S and {max Ms}s∈S are nondecreasing in s.
Assumption 3 ensures that, if a certain number of rich people

is sufficient to implement some social change decisions in one
state, then it is also sufficient to do so in lower states; similarly, if
a certain number of poor people is sufficient to implement such
change in some state, then it can also do so in higher states. In
terms of example 1 in the Introduction, it captures the idea that
higher-indexed states, corresponding to more democratic states,
give less power to more aristocratic individuals. In that example,
assumptions 1–3 are satisfied provided that, as stated there,
ui(s) − ui(s) is increasing in s and that we adopt some weighted
(super) majority rule for changing the composition of the club or
social rules.
We next introduce stochastic shocks. We assume that, at each

date t, the set of available states is Lt = {lt, . . . , rt}, (i.e., the set
of feasible states is always assumed to be connected). New states,
lt − 1 and rt + 1, are assumed to become available stochastically
at the beginning of period t with probabilities plLt

and prLt
,

respectively.
The last aspect of the dynamic game left to be described is the

process by which proposals are made. We model this aspect using
a set of protocols. A protocol πs for state s is a finite sequence of
players πs ¼ ðπs1; . . . ; πsKs

Þ such that, for any player i ∈ N, πsk ¼ i
for some k ∈ {1, . . . , Ks}. This last condition assures that each
player has a chance to be the agenda setter in each state.
Finally, in what follows, we assume that only one-step tran-

sitions are allowed, meaning that, if the current state is st, then
st + 1 ∈ {st − 1, st, st + 1}. This assumption significantly simplifies
the analysis. The general case where any st+1 ∈ Lt is feasible is
studied in a companion paper (3).
The timing of each period is as follows.

i) Period t begins with state st−1 inherited from the previous
period (s0 is exogenously given).

ii) With probability ð1− plLt− 1;st− 1
Þð1− prLt− 1;st− 1

Þ, the set of
available states stays the same (Lt = Lt−1); otherwise, it
expands to the left, right, or both sides.

iii) Players become agenda setters, one at a time, according to
the protocol πst− 1 . Agenda setter i proposes an alternative,
at, i ∈ Lt, such that st−1 − 1 ≤ at, i ≤ st−1 + 1.

iv) All players vote sequentially over the proposal at, i (e.g., we
can assume that the voting sequence is 1, 2, . . . , n, al-
though any deterministic or stochastic sequence would also
give identical results). If the set of players that supports the
transition, Y, is a winning coalition (i.e., Y∈Wst− 1 ), then
st = at, i (i.e., a transition to at, i takes place). Otherwise, the
next person makes a proposal, and if the last agent in the
protocol has already made a proposal and no proposal has
been accepted, then st = st−1.

v) Each player i gets instantaneous utility ui(st).

We are interested in Markov perfect equilibria (MPE) of the
above game, which essentially means (subgame perfect) equi-
libria of this dynamic game are Markovian in the sense that they
are conditioned on the payoffs-relevant variables (such as the
current state st−1).

Analysis
Definition 2 (Transition Mapping). Consider the game above with
protocol {πs}s∈S and MPE σ in pure strategies. Mapping ϕL: S→
S is referred to as the transition mapping corresponding to
equilibrium σ and the set of available states L if, whenever st−1 = s
and Lt = L, st = ϕL(s) along the equilibrium path of σ.
The transition mapping is an economical way of summarizing

the structure of equilibria, because it specifies how the state st
will evolve.

Definition 3 (Monotone Mappings). Transition mapping ϕL: S → S
is monotone if, for any s1, s2 ∈ S with s1 ≤ s2, ϕL(s1) ≤ ϕL(s2).
Monotone transition mappings rule out cycles, and we will see

that our equilibria will induce such monotone mappings.
Some of our results hold not for all but for almost all pos-

sible configurations of stage payoffs. To formalize this notion,
we say that some statement is held generically if it is true for
all combinations of payoffs {ui(s)}i∈N, s∈ S, except, perhaps,
for a set of Lebesgue measure zero. We now formulate our
first result.

Proposition 1.
i) For any set of protocols {πs}s ∈ S and any initial state s0,

there exists a Markov perfect equilibrium of the game in
pure strategies that induces a monotone transition map-
ping ϕL for every set of available states L ⊂ S.

ii) Generically, any pure strategy Markov perfect equilibrium
induces monotone transition mappings ϕL for every set of
available states L ⊂ S.

iii) Generically, the transition mapping ϕL is unique whenever
either (i) preferences are single peaked or (ii) every set of
quasi-median voters is a singleton. This unique mapping
does not depend on {πs}s ∈ S.

Proposition 1 proves the existence of a pure strategy Markov
perfect equilibrium. For this proof, we first construct an equilib-
rium for the environment where all states have become available
(i.e., Lt = S for any t) and show that the implied transition map-
ping is monotone. The monotonicity of the mapping implies that
single crossing (assumption 1) holds not only for stage payoffs but
also for continuation values. This finding allows us to use the
following inductive argument: iterate by one step to the situation
where only one state is not available yet, and assign payoffs to
different states that are linear combinations of stage payoffs in the
current state and continuation values after a possible shock (which
we already know by induction). The linear combinations are such
that the single-crossing condition is preserved, and thus, we can
apply the same argument in a situation in which two states are not
available yet and so on. Moreover, this construction ensures that
the transition mapping is monotone for all L.
The second part shows that all equilibria have a simple and

intuitive structure: generically, all equilibria can be represented
by monotone transition mappings. By definition, this structure
ensures that there are no equilibrium cycles (where the equi-
librium path periodically visits some states s1, . . . , sk). An im-
mediate implication is that each nonmonotone switch (e.g., a
transition from s to s′ < s followed by a transition to s″ > s′) in
the observed evolution of states must be a result of a shock.
Finally, the third part establishes the uniqueness of the transition

mapping provided that one of two (or both) additional assump-
tions hold. Although theoretically restrictive, these assumptions
hold in a number of applications, and the uniqueness result is,
therefore, applicable to these applications.

Proposition 2.Generically, the evolution of states has a limit state
s∞: as t → ∞, st converges almost surely to some s∞. The limit
state s∞ might depend on the timing and sequence of shocks.
This proposition implies that, despite stochastic shocks, the

process of social evolution will lead to a (long-run stable) limit
state. Intuitively, without any shocks, the monotonicity of tran-
sition paths ensures convergence to such a limit state. When
there are shocks, they will ultimately lead to the entire set of
feasible states that are available (L = S), and then monotonicity
again ensures convergence.

Proposition 3. Suppose that either (i) preferences are single-
peaked or (ii) all sets of quasi-median voters are singletons.
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Suppose also that, given the currently available set of states L =
{l, . . . , r}, transition paths have stabilized by period t (i.e., st =
st−1 = st−2). Then, generically after a shock that adds a higher-
indexed state at time t so that Lt = {l, . . . , r + 1}, there cannot
be a transition to a lower state (i.e., sτ ≥ st for all τ such that Lτ =
Lt), whereas a transition to a higher state is possible. Similarly,
generically after a shock that adds a lower-indexed state at time t
so that Lt = {l−1, . . . , r}, there cannot be a transition to a higher
state (i.e., sτ ≤ st for all τ such that Lτ = Lt), whereas a transition
to a lower state is possible.
This proposition shows that the addition of a new high state

does not lead to a transition to a lower state. Roughly speaking,
this finding is because such a new state makes higher states rel-
atively more attractive (given the single crossing). Similarly, the
addition of a low state does not lead to the transition to a higher
state. This result also implies that, if shocks are sufficiently rare,
the direction of response to a shock is predictable.
We next provide an example showing how the path of social

change is contingent and history-dependent [i.e., depends on the
timing (and exact sequence) of realization of uncertainty].

Example 2 (Early Shocks May Make Reforms More Difficult). Suppose
that S = {1, 2, 3}, then the initial state is s0 = 1. Suppose also
that state 2 corresponds to limited democracy, and a change to
this state will shift political power away from player 1. Let player
2 be the quasi-median voter in state 2 (i.e., M2 = {2}). Finally,
suppose that u2(3) > u2(2) and u1(2) > u1(1) > u1(3), and
therefore, player 2 would prefer transition to a more democratic
state 3 if such transitions were feasible. However, this transition
is disliked by player 1, who prefers state 2. For instance, we can
think of player 1 as corresponding to the king or aristocracy and
being in favor of limited democracy but disliking full democracy
(ref. 3 has a more detailed discussion of this example). Suppose
that β is sufficiently high so that, when L = {1, 2, 3}, player 1
prefers to maintain state 1 (because a change to state 2 will
immediately induce a change to state 3, which he dislikes).
Suppose we start with L0 = {1, 2} and let the probability that

the set of feasible states will expand to L = {1, 2, 3} be p. For p
sufficiently low, player 1 would be in favor of a switch to state 2,
because he would expect that society will spend a long time in this
state. Suppose, however, that there is an early shock, revealing
that state 3 is feasible at time t = 0. This early shock makes the
path of reform more difficult, because it discourages player 1
from accepting the change to state 2. In terms of the discussion of
democracy in the British context in the Introduction, an early
shock would correspond to the elite believing in 1832 that there
would be a very rapid reform to a much more inclusive franchise
immediately. If many members of the elite supported the reforms
of 1832 with the understanding that these reforms would be rel-
atively stable, such a shock might have made them less willing to
accept the more modest reforms of 1832 in the first place.

Conclusion
Almost all democratic societies have evolved socially and polit-
ically out of authoritarian and nondemocratic regimes. This
evolution has often been a result of intense political and social
conflict and even revolutionary changes. These changes not only
altered the allocation of economic resources in society but also
the structure of political power. In this paper, we developed a
framework for studying dynamics of political and social change
that alters the balance of power in society, thus paving the way
for future changes.

Appendix: Proofs
Proof of Proposition 1. Here, we provide a short version of the
proof, which contains the main ideas and main steps but omits
some technical details. A not for publication appendix contains
the complete proof.

We prove a stronger result obtained by weakening one con-
dition in Proposition 1, part iii. We replace single peakedness
with, for each state s, there is a player i(s) ∈ Ms such that there
does not exist two states x < s and y > s such that ui(x) > ui(s) and
ui(y) > ui(s) (single peakedness trivially implies this condition).
We start by proving this stronger proposition in the non-
stochastic case (i.e., where L0 = S). We do so by induction by the
number of states m ¼ jSj. The base m = 1 is trivial. We now as-
sume that the proposition has been proved for all configurations
with jSj< m and now prove the induction step for each part of
the proposition.

Proof for the Nonstochastic Case. Part i. Consider two possibilities.
Suppose first that ui(1) ≤ ui(2) for at least one i ∈ M2. We
consider a new game with the same set of players N, the same set
of states S′= [2,m], the same set of winning coalitions on S′, and
the same protocols on S′, and payoffs are given by ~uiðxÞ ¼ uiðxÞ
for each x ∈ S′. For this new game, assumption 1 holds, and by
induction, it has MPE σ′ with transition mapping ϕ′. Let fV ′iðxÞg
be the continuation values in this MPE. Let us define ϕ:S → S by
setting ϕ(x) = ϕ′(x) if x ∈ S′ and ϕ(1) = 1 if V ′ið2Þ ≤ uið1Þ=ð1− βÞ
for some i ∈ M1 and ϕ(1) = 2 otherwise. It is then easy to con-
struct MPE σ that implements ϕ, which completes the induction
step in this case.
The second possibility is that ui(1) > ui(2) for all i ∈ M2. We

take a new game with the set of states S′ = [2, m], the same sets
of winning coalitions, and the same protocols on S′ but with
payoffs given by ~uiðxÞ ¼ uiðxÞ for each x ≥ 3 and ~uiðxÞ ¼
ð1− βÞuið2Þ þ βuið1Þ if x = 2. Again, assumption 1 holds, and
therefore, we can take MPE σ′ with transition mapping ϕ′; de-
note the continuation values by fV ′iðxÞg. We then define ϕ(x) =
ϕ′(x) for all x ≥ 3 and consider the following cases separately.
First, if at least one i ∈ M2 has uið2Þ=ð1− βÞ ≥ V ′ið3Þ, then we let
ϕ(2) = ϕ(1) = 1.
Second, suppose that all players i ∈ M2 have V ′ið3Þ>

uið2Þ=ð1− βÞ. Take the player (not necessarily in M2) for whom
these two inequalities are satisfied and who is the last to propose
when the state is two; denote this player by j. If either
uið1Þ=ð1− βÞ ≥ V ′ið3Þ for all i ∈ M2 or this expression is true for
at least one player in M2 and player j, then let ϕ(2) = ϕ(1) = 1.
The remaining case is where all players i ∈ M2 have

V ′ið3Þ> uið2Þ=ð1− βÞ but uið1Þ=ð1− βÞ<V ′ið3Þ for at least one i
∈ M2, and moreover, this finding holds for either all players in
M2 or player j; in this case, let ϕ(2) = 3. Now, let ϕ(1) = 2 if
ð1− βÞuið2Þ þ βV ′ið3Þ> uið1Þ for all i ∈ M1, and ϕ(1) = 1 oth-
erwise. In all cases, it is straightforward to construct MPE σ that
implements ϕ. This finding completes the proof of existence.
Part ii. Generically, ui(x) ≠ ui(y) for any x, y ∈ S and i ∈ N.
Suppose, to obtain a contradiction, that mapping ϕ supported by
MPE σ is nonmonotonic. Then, there are x, y ∈ S such x < y and
ϕ(x) > ϕ(y). Because transitions are one step, we have y = x + 1.
Let us prove that ui(y) > ui(x) for all i ∈ Mx. For every i ∈ S,

Vi(x) = ui(x) + βVi(y) and Vi(y) = ui(y) + βVi(x), which implies
Vi(x) − Vi(y) = (1 + β) (ui(x) − ui(y)). In the not for publication
appendix, we examine agenda setting and voting strategies to
prove that Vi(y) ≥ Vi(x) for all i ∈ Mx. Given genericity, ui(y) >
ui(x) for all i ∈ Mx.
We can similarly prove that ui(x) > ui(y) for all i ∈ My. How-

ever, by assumptions 1 and 3, the same must hold for every i ∈
Mx, which contradicts the opposite inequality established in the
previous paragraph. This contradiction completes the proof.
Part 3. Suppose that there are two MPEs, σ1 and σ2, and two
different transition mappings, ϕ1 and ϕ2, corresponding to these
MPEs, respectively. Without loss of generality, assume that m is
the minimal number of states for which this is possible (i.e., if
jSj<m, then transition mapping is unique). Obviously, m ≥ 2.
Let us first prove that if ϕ1(x) = x, then x = 1 or x = m . In-

deed, suppose the opposite and consider ϕ2(x). If ϕ2(x) < x, then
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ϕ1j½1; x� and ϕ2j½1; x� are two different mappings, both of which may,
which is easy to show, be transition mappings for MPE in the
game with the same players but with the set of states S′ = [1, x].
This finding would contradict the assertion that m is the minimal
number of players for which this possibility occurs. If ϕ2(x) > x,
we get a similar contradiction by considering the subset of states
[x, m], and if ϕ2(x) = x, we get a contradiction by considering [1,
x] or [x, m] depending on where ϕ1 and ϕ2 differ. We similarly
prove that, if ϕ2(x) = x, then either x = 1 or x = m.
We now consider the two cases of the proposition separately.
(i) Generically, no player gets the same utilities in two different

states, and both mappings are monotone. If ϕ1(x)< x< ϕ2(x) or vice
versa, then for all i∈Mx, theremust be both a state x1< x and a state
x2 > x such that ui(x1) > ui(x) and ui(x2) > ui(x), which contradict the
assumption in this case. Because for 1 < x <m, ϕ(x) ≠ x, we get that
ϕ1(x) = ϕ2(x) for such x. Let us prove that ϕ1(1) = ϕ2(1). If this
equation is not the case, then ϕ1(1) = 1 and ϕ2(1) = 2 (or vice
versa). Ifm= 2, then monotonicity implies ϕ2(2) = 2, and ifm > 2,
then as proved earlier, we have ϕ2(x) = x + 1 for 1 < x < m and
ϕ2(m) =m. In both cases, we have ϕ1(x) = ϕ2(x) > 1 for 1 < x ≤m.
Hence, V 1

i ð2Þ ¼ V 2
i ð2Þ for all i ∈ N (where V1 and V2 are continu-

ation payoffs under ϕ1 and ϕ2, respectively). Because σ1 is MPE, we
must have uið1Þ=ð1− βÞ ≥ V 1

i ð2Þ for i∈M1, and because σ2 isMPE,
we must have uið1Þ=ð1− βÞ ≤ V 2

i ð2Þ. Generically, these expressions
cannot hold together, and this finding proves thatϕ1(1)=ϕ2(1).We
can similarly prove that ϕ1(m) = ϕ2(m), which implies that ϕ1 = ϕ2.
This equation contradicts the hypothesis of nonuniqueness.
(ii) In this case, let Mx denote the unique quasi-median voter

in state x ∈ S, and let b(x) be the state that maximizes uMxðyÞ on S
(generically, it is unique). By assumption 1, the sequence
fbðxÞgmx¼1 is nondecreasing. Let us prove that b(2) ≥ 2. Indeed, if
b(2) = 1, then b(1) = 1 by monotonicity; hence, we must have
ϕ1(1) = ϕ2(1) = 1, and therefore, ϕ1(2) = ϕ2(2) = 1. Now
consider a game with the same set of players, set of states S′= [2,
m], same sets of winning coalitions, and payoffs given by
~uiðxÞ ¼ uiðxÞ for x > 2, ~uið2Þ ¼ ð1− βÞuið2Þ þ βuið1Þ. Now, notice
that perpetual state 2 in the new game delivers exactly the
continuation utility V 1

i ð2Þ ¼ V 2
i ð2Þ of the original game. It is now

easy to see that the two mappings ϕ1 and ϕ2 given by
~ϕjðxÞ ¼ ϕjðxÞ if x > 2, ~ϕjð2Þ ¼ 2 may be supported by MPE in the
new game. However, these mappings are different, which con-
tradicts that m is the minimal number of players for which this
expression is possible. Hence, b(2) ≥ 2. We can similarly prove
that b(m−1) ≤ m−1. Because fbðxÞgm− 1

x¼2 is nondecreasing,
b(x) = x for some x ∈ [2, m−1]. However, this expression would
imply that ϕ1(x) = x, which we earlier proved to be impossible.
This contradiction completes the proof in the nonstochastic case.

Proof for the Stochastic Case. Part 1. The proof proceeds by in-
duction by the number of states that are in S but not L. The base
was proved earlier.We prove the step for the case where only states
on the right may be added, leaving the general case for the not for
publication appendix. Let L = [l, r] and L′ = [l, r +1]; for L′, we
know, by induction, that there is an MPE σ′ with a transition
mapping ϕ′, which generates continuation utilities fV ′iðsÞgs∈L′i∈N .
Let us define (Eq. 3)

~uiðsÞ ¼ uiðsÞ þ βprLV ′i
�
ϕ′ðsÞ� and �

Eq: 4
�

[3]

~β ¼ β
�
1− prL

�
; [4]

and we consider a game without shocks, with a set of states L,
and with the same winning coalitions and protocols but stage
payoffs given by ~uiðsÞ and discount factor ~β. Because assumption
1 holds, this game has an MPE ~σ with monotone transition
mapping ~ϕ. In this game, continuation utilities satisfy (Eq. 5)

~V
L
i ðsÞ ¼ ~uiðsÞ þ ~β ~V

L
i ð~ϕðsÞÞ [5]

and therefore, are continuation utilities in the original game
when the current set of states is L, ~ϕ is implemented before the
shock, and ϕ′ is implemented afterward. Consequently, for
ϕ ¼ ~ϕ, we can construct MPE σ in the original game, and
therefore, ϕ is implemented before the shock. This finding
proves the induction step and completes the proof of part 1.
Part 2. This part follows directly from part 2 above (mapping ~ϕ
is constructed as a transition mapping of some game with-
out shocks).
Part 3. It suffices to prove that respective conditions hold in a
game with the set of states L, utilities given by ~uiðsÞ, and a dis-
count factor ~β. In case ii, it follows from the hypothesis for the
game with a set of states S. In case i, take any state s and player
i(s) for whom the condition holds for utilities ui(s), and without
loss of generality, suppose ui(s) ≥ ui(x) for all x > s. If this sup-
position holds, in the game with the set of states L′, ϕ′(s) > s
holds only if V ′iðsÞ ¼ uiðsÞ=ð1− βÞ, in which case V ′iðxÞ ≤ V ′iðsÞ,
because the trajectory may take x only to states to the right of s.
If ϕ′(s) > s, then V ′iðsÞ ≥ uiðsÞ=ð1− βÞ [this expression holds for
all i ∈ Ms, including i(s)]. The trajectory starting from x > s will
either involve states that yield at most ui(s) per period or lead to
state s, thus delivering a continuation value of V ′iðsÞ. This finding
implies that V ′iðxÞ ≤ V ′iðsÞ for all x in this case as well. However,
this finding implies that ~uiðsÞ ≥ ~uiðxÞ for all x > s. This argument
proves that the property in case i is satisfied, and part 3 of the
proposition in the nonstochastic case is applicable.

Proof of Proposition 2. Suppose not. Then, there is an infinite number
of transitions from one state to another. Because the total
number of shocks is finite, this proposition means that an infinite
number of transitions happen between shocks. However, in an
equilibrium with monotone transition mapping, this is impossible.

Proof of Proposition 3. The assumptions of the proposition imply that
a transition mapping is uniquely determined and monotone both for
L andL′=Lt as the set of available states.Without loss of generality,
suppose that L′ is the entire set of states. Suppose, to obtain a con-
tradiction, that s∈ L is such that ϕ(s) = s, but ϕ′(s)< s, where ϕ and
ϕ′ are the unique transition mappings for L and L′, respectively.
Notice, however, that ϕ′j½1;s� and ϕj½1;s� may be sustained as MPE in
a game with the set of states [1, s], same sets of winning coalitions,
same protocols, and same stage payoffs as in the initial game where
the entire set of states L′ is available. But ϕ′ and ϕ are different
mappings, which contradicts the uniqueness that should hold in
this case.
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